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Abstract    

We consider some basic properties of the disjoint variation of lattice group-valued set functions. Moreover, using 
the Maeda-Ogasawara-Vulikh representation theorem, we prove an extension result for 𝑘𝑘-subadditive lattice group-
valued capacities, in which (𝑠𝑠)-boundedness, continuity from above and from below are intended in the classical 
like sense, and not necessarily with respect to a single order sequence or regulator. Furthermore we pose some open 
problems. 
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1.Introduction 

In the literature there are many studies about non-additive set functions. For an overview, we quote for example 
[19,29,33] and their bibliographies. These topics have several applications, for instance to intuitionistic fuzzy events, 
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fuzzy measures, belief functions and observables (see also [1,30,33]) and to decision theory and mathematical 
economics (see also [2]).  
In this paper we deal with extension results for lattice group-valued 𝑘𝑘-subadditive capacities from an algebra to the 
least 𝜎𝜎-algebra containing it. We extend earlier results proved in [7,9,20,29]. Note that in [35] it is shown that a 𝜎𝜎-
additive set function, defined on any algebra 𝒲𝒲 of any abstract infinite set 𝐺𝐺 and taking valued in a Dedekind 
complete vector lattice 𝑅𝑅, has an extension to the 𝜎𝜎-algebra 𝜎𝜎(𝒲𝒲) generated by 𝒲𝒲 if and only if 𝑅𝑅 is weakly 𝜎𝜎-
distributive. However, if 𝑅𝑅 is not weakly 𝜎𝜎-distributive, it is still possible to have such an extension, if the involved 
algebra 𝒲𝒲 satisfies suitable properties. This is the case of perfect algebras, like for instance the algebra of all open-
closed subsets of a compact totally disconnected topological space (see also [9,12,15,28]), which is widely used in 
the literature to construct Stone-type extensions, which have several applications, for example to convergence and 
decomposition theorems (see also [10,11,12,18,31,32]). We use the Maeda-Ogasawara-Vulikh representation 
theorem for lattice groups (see also [8]), the extension results proved in [20] in the non-additive setting, and deduce 
the required properties of the extension by the corresponding ones of the associated real-valued extensions. In our 
setting, in general the involved set functions are not finitely additive, and hence we consider the disjoint variation 
(see also [29,36,37]), by means of which it is possible to overcome technical difficulties and to obtain (𝑠𝑠)-
boundedness of the “components” of the involved set functions, from which it is possible to deduce (𝑠𝑠)-
boundedness of our starting set function. This fact, in the finitely additive case, is guaranteed by the only 
boundedness. We also show that our approach strictly includes the finitely additive case. Observe that in our 
context, (𝑠𝑠)-boundedness, continuity from above and from below are intended in the classical like sense, and not 
necessarily with respect to a single order sequence or regulator.  
Some other results about extensions of finitely additive or modular measures and related topics can be found, for 
instance, in [3,4,5,6,9,15,16,22,23,24,25,26,27,28,34,35]. Finally, we pose some open problems. 

2.Method and tools 

It is dealt with the problem of extending a non-additive lattice group-valued set function, satisfying suitable 
properties, from a perfect algebra to the smallest 𝜎𝜎-algebra containing it. In general, if the involved algebra is 
arbitrary and the considered lattice group is not weakly 𝜎𝜎-distributive, this problem has no solution (see also [35]). 
Since we treat the non-additive case, in order to overcome the technical difficulties we consider k-subadditive 
capacities of bounded disjoint variation, and we show that our setting includes strictly the finitely additive case. We 
prove that, differently to finitely additive case, boundedness of a k-subadditive capacity does not imply that it is of 
bounded disjoint variation, and this property is not a necessary condition for (𝑠𝑠)-boundedness. In order to prove our 
main results, we use the analogous ones proved for real-valued capacities (see also [7,20]) and the Maeda-
Ogasawara-Vulikh representation theorem of  lattice groups as suitable subgroups of continuous functions, by means 
of which it is possible to prove some properties of lattice group-valued set functions by using the corresponding 
ones of  the real-valued set functions and by a density argument, which uses the Baire category theorem. We use 
perfectness of the starting algebra and boundedness of the disjoint variation to prove that the “components” of the 
given set functions are continuous from above and from below and  (𝑠𝑠)-bounded,  respectively. This is crucial, in 
order to apply the extension results existing in the literature in the real case and the Maeda-Ogasawara-Vulikh 
theorems.   

3.Preliminaries 
We begin with recalling the following basic concepts on lattice groups (see also [12]).  
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Definitions 3.1.  

(a) Let 𝑅𝑅 be a Dedekind complete lattice group. A sequence (𝜎𝜎𝑝𝑝)𝑝𝑝  in 𝑅𝑅 is called (𝑂𝑂)-sequence iff it is decreasing 
and ⋀  ∞

𝑝𝑝=1 𝜎𝜎𝑝𝑝 = 0.  

(b) A sequence (𝑥𝑥𝑛𝑛)𝑛𝑛  in 𝑅𝑅 is said to be order convergent (or (𝑂𝑂)-convergent ) to 𝑥𝑥 iff there exists an (𝑂𝑂)-sequence 
(𝜎𝜎𝑝𝑝)𝑝𝑝  in 𝑅𝑅 such that for every 𝑝𝑝 ∈ ℕ there is a positive integer 𝑛𝑛0 with |𝑥𝑥𝑛𝑛 − 𝑥𝑥| ≤ 𝜎𝜎𝑝𝑝  for each 𝑛𝑛 ≥ 𝑛𝑛0, and in this 
case we write (𝑂𝑂) lim𝑛𝑛   𝑥𝑥𝑛𝑛 = 𝑥𝑥.  

(c) If (𝑥𝑥𝑛𝑛)𝑛𝑛  is a bounded sequence in 𝑅𝑅, then set  

lim sup
𝑛𝑛

𝑥𝑥𝑛𝑛 = �(
∞

𝑠𝑠=1

�𝑥𝑥𝑛𝑛

∞

𝑛𝑛=𝑠𝑠

),  lim inf
𝑛𝑛

𝑥𝑥𝑛𝑛 = �(
∞

𝑠𝑠=1

�𝑥𝑥𝑛𝑛

∞

𝑛𝑛=𝑠𝑠

). 

Note that (𝑂𝑂) lim𝑛𝑛   𝑥𝑥𝑛𝑛 = 𝑥𝑥 if and only if lim sup𝑛𝑛   𝑥𝑥𝑛𝑛 = lim inf𝑛𝑛   𝑥𝑥𝑛𝑛 = 𝑥𝑥 (see also [12]).  

(d) We call sum of a series ∑ 𝑥𝑥𝑛𝑛∞
𝑛𝑛=1  in 𝑅𝑅 the limit (𝑂𝑂) lim𝑛𝑛 ∑ 𝑥𝑥𝑗𝑗𝑛𝑛

𝑗𝑗=1 , if it exists in 𝑅𝑅.  

We now recall the Maeda-Ogasawara-Vulikh theorem, which gives a representation of lattice groups as subsets of 
continuous extended real-valued functions defined on suitable topological spaces (see also [8,12]). From now on, we 
denote by the symbols ∨ and ∧ the supremum and infimum in 𝑅𝑅 and by sup and inf the pointwise supremum and 
infimum or the supremum and infimum in ℝ, respectively.  

Theorem 3.2.  Given a Dedekind complete lattice group 𝑅𝑅, there exists a compact extremely disconnected 
topological space 𝛺𝛺, unique up to homeomorphisms, such that 𝑅𝑅 can be embedded isomorphically as a subgroup of 
𝐶𝐶∞(𝛺𝛺) = {𝑓𝑓 ∈ ℝ�𝛺𝛺 : 𝑓𝑓 is continuous, and {𝜔𝜔: |𝑓𝑓(𝜔𝜔)| = +∞} is nowhere dense in 𝛺𝛺}. Moreover, if we denote by 𝑎𝑎� an 
element of 𝐶𝐶∞(𝛺𝛺) which corresponds to 𝑎𝑎 ∈ 𝑅𝑅 under the above isomorphism, then for any family (𝑎𝑎𝜆𝜆)𝜆𝜆∈𝛬𝛬  of 
elements of 𝑅𝑅 with 𝑅𝑅 ∍ 𝑎𝑎0 = ⋁ 𝑎𝑎𝜆𝜆𝜆𝜆∈𝛬𝛬  (where the supremum is taken with respect to 𝑅𝑅), then 𝑎𝑎0� = ⋁ 𝑎𝑎𝜆𝜆�𝜆𝜆∈𝛬𝛬  with 
respect to 𝐶𝐶∞(𝛺𝛺), and we get 𝑎𝑎0�(𝜔𝜔) = 𝑠𝑠𝑠𝑠𝑝𝑝𝜆𝜆 𝑎𝑎𝜆𝜆� (𝜔𝜔) in the complement of a meager subset of 𝛺𝛺. The same is true for 
⋀ 𝑎𝑎𝜆𝜆𝜆𝜆∈𝛬𝛬 .  

We now recall some fundamental properties of lattice group-valued capacities (see also [13,17,29]). From now on, 𝑅𝑅 
is any Dedekind complete lattice group, 𝐺𝐺 is any infinite set, 𝒫𝒫(𝐺𝐺) is the family of all subsets of 𝐺𝐺, Σ ⊂ 𝒫𝒫(𝐺𝐺) is a 
𝜎𝜎-algebra, 𝒲𝒲 ⊂ 𝒫𝒫(𝐺𝐺) is an algebra, 𝜎𝜎(𝒲𝒲) is the smallest sub-𝜎𝜎-algebra of 𝒫𝒫(𝐺𝐺) containing 𝒲𝒲, 𝑘𝑘 is a fixed 
positive integer, and, when it is not said explicitly, 𝑚𝑚:𝒲𝒲 → 𝑅𝑅 or 𝑚𝑚: Σ → 𝑅𝑅 is a positive set function.  

Definitions 3.3. (a) We say that 𝑚𝑚:𝒲𝒲 → 𝑅𝑅 is 𝑘𝑘-subadditive on 𝒲𝒲 iff  

 𝑚𝑚(𝐴𝐴 ∪ 𝐵𝐵) ≤ 𝑚𝑚(𝐴𝐴) + 𝑘𝑘 𝑚𝑚(𝐵𝐵)  whenever 𝐴𝐴,𝐵𝐵 ∈ 𝒲𝒲,  𝐴𝐴 ∩ 𝐵𝐵 = ∅. (1) 

(b) A capacity 𝑚𝑚:𝒲𝒲 → 𝑅𝑅 is an increasing set function with 𝑚𝑚(∅) = 0.  

(c) When 𝑅𝑅 = ℝ, a 1-subadditive capacity is called also a submeasure (see also [12,20]).  

Remark 3.4.  Observe that, if 𝑚𝑚:𝒲𝒲 → 𝑅𝑅 is a 𝑘𝑘-subadditive capacity, then 𝑚𝑚(𝐴𝐴 ∪ 𝐵𝐵) ≤ 𝑚𝑚(𝐴𝐴) + 𝑘𝑘 𝑚𝑚(𝐵𝐵) for any 𝐴𝐴, 
𝐵𝐵 ∈ Σ. Indeed, thanks to monotonicity and 𝑘𝑘-subadditivity, we have  

𝑚𝑚(𝐴𝐴 ∪ 𝐵𝐵) = 𝑚𝑚(𝐴𝐴 ∪ (𝐵𝐵 ∖ 𝐴𝐴)) ≤ 𝑚𝑚(𝐴𝐴) + 𝑘𝑘 𝑚𝑚(𝐵𝐵 ∖ 𝐴𝐴) ≤ 𝑚𝑚(𝐴𝐴) + 𝑘𝑘 𝑚𝑚(𝐵𝐵) 

whenever 𝐴𝐴, 𝐵𝐵 ∈ Σ.  
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Definitions 3.5. (a) A positive set function 𝑚𝑚:𝒲𝒲 → 𝑅𝑅 is continuous from above at ∅ on 𝒲𝒲 iff  

�𝑚𝑚
∞

𝑛𝑛=1

(𝐸𝐸𝑛𝑛) = (𝑂𝑂) lim
𝑛𝑛
𝑚𝑚 (𝐸𝐸𝑛𝑛) = 0 

for every decreasing sequence (𝐸𝐸𝑛𝑛)𝑛𝑛  in 𝒲𝒲 with ⋂ 𝐸𝐸𝑛𝑛∞
𝑛𝑛=1 = ∅.  

(b) We say that 𝑚𝑚 is continuous from above (from below, respectively) on 𝒲𝒲 iff  

�𝑚𝑚
∞

𝑛𝑛=1

(𝐸𝐸𝑛𝑛) = (𝑂𝑂) lim
𝑛𝑛
𝑚𝑚 (𝐸𝐸𝑛𝑛) = 𝑚𝑚(𝐸𝐸) 

( �𝑚𝑚
∞

𝑛𝑛=1

(𝐸𝐸𝑛𝑛) = (𝑂𝑂) lim
𝑛𝑛
𝑚𝑚 (𝐸𝐸𝑛𝑛) = 𝑚𝑚(𝐸𝐸),   respectively ) 

for every decreasing (increasing, respectively) sequence (𝐸𝐸𝑛𝑛)𝑛𝑛  in 𝒲𝒲 with ⋂ 𝐸𝐸𝑛𝑛∞
𝑛𝑛=1 = 𝐸𝐸 ∈ 𝒲𝒲   ( ⋃ 𝐸𝐸𝑛𝑛∞

𝑛𝑛=1 = 𝐸𝐸 ∈ 𝒲𝒲, 
respectively).  

(c) We say that 𝑚𝑚 is (𝑠𝑠)-bounded on 𝒲𝒲 iff (𝑂𝑂) lim𝑛𝑛 𝑚𝑚 (𝐶𝐶𝑛𝑛) = 0 for every disjoint sequence (𝐶𝐶𝑛𝑛)𝑛𝑛  in 𝒲𝒲.  

The following result holds.  

Proposition 3.6.  Let 𝑚𝑚:𝒲𝒲 → 𝑅𝑅 be a 𝑘𝑘-subadditive capacity, continuous from above at ∅. Then 𝑚𝑚 is continuous 
from above and from below.  

Proof. We first prove continuity from above. Let (𝐴𝐴𝑛𝑛)𝑛𝑛  be a decreasing sequence in 𝒲𝒲, 𝐴𝐴: = ⋂ 𝐴𝐴𝑛𝑛∞
𝑛𝑛=1 , 𝐴𝐴 ∈ 𝒲𝒲, and 

let 𝐵𝐵𝑛𝑛 : = 𝐴𝐴𝑛𝑛 ∖ 𝐴𝐴. We get 𝐵𝐵𝑛𝑛 ∈ 𝒲𝒲 for each 𝑛𝑛 ∈ ℕ, ⋂ 𝐵𝐵𝑛𝑛∞
𝑛𝑛=1 = ∅, and hence  

(𝑂𝑂) lim
𝑛𝑛
𝑚𝑚 (𝐵𝐵𝑛𝑛) = �𝑚𝑚

∞

𝑛𝑛=1

(𝐵𝐵𝑛𝑛) = 0. 

Taking into account monotonicity and 𝑘𝑘-subadditivity of 𝑚𝑚, we obtain  

0 ≤ 𝑚𝑚(𝐴𝐴𝑛𝑛) −𝑚𝑚(𝐴𝐴) ≤ 𝑘𝑘 𝑚𝑚(𝐴𝐴𝑛𝑛 ∖ 𝐴𝐴) = 𝑘𝑘 𝑚𝑚(𝐵𝐵𝑛𝑛), 

and so  

0 ≤ lim sup
𝑛𝑛

(𝑚𝑚(𝐴𝐴𝑛𝑛) −𝑚𝑚(𝐴𝐴)) ≤ 𝑘𝑘 �𝑚𝑚
∞

𝑛𝑛=1

(𝐵𝐵𝑛𝑛) = 0. 

Therefore (𝑂𝑂) lim𝑛𝑛(𝑚𝑚(𝐴𝐴𝑛𝑛) −𝑚𝑚(𝐴𝐴)) = 0, namely (𝑂𝑂) lim𝑛𝑛(𝑚𝑚(𝐴𝐴𝑛𝑛)) = 𝑚𝑚(𝐴𝐴), that is  

𝑚𝑚(𝐴𝐴) = (𝑂𝑂) lim
𝑛𝑛
𝑚𝑚 (𝐴𝐴𝑛𝑛) = �𝑚𝑚

∞

𝑛𝑛=1

(𝐴𝐴𝑛𝑛). 

Thus, we obtain continuity from above of 𝑚𝑚.   
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We now prove continuity from below. Let (𝐸𝐸𝑛𝑛)𝑛𝑛  be an increasing sequence of elements of 𝒲𝒲, 𝐸𝐸: = ⋃ 𝐸𝐸𝑛𝑛∞
𝑛𝑛=1 , 

𝐸𝐸 ∈ 𝒲𝒲. Let 𝐹𝐹𝑛𝑛 : = 𝐸𝐸 ∖ 𝐸𝐸𝑛𝑛 , 𝑛𝑛 ∈ ℕ. Note that 𝐹𝐹𝑛𝑛 ∈ 𝒲𝒲 for every 𝑛𝑛 ∈ ℕ and that ⋂ 𝐹𝐹𝑛𝑛∞
𝑛𝑛=1 = ∅. Hence, by hypothesis, 

we get (𝑂𝑂) lim𝑛𝑛 𝑚𝑚 (𝐹𝐹𝑛𝑛) = ⋀ 𝑚𝑚∞
𝑛𝑛=1 (𝐹𝐹𝑛𝑛) = 0. By monotonicity and 𝑘𝑘-subadditivity of 𝑚𝑚, we have  

0 ≤ 𝑚𝑚(𝐸𝐸) −𝑚𝑚(𝐸𝐸𝑛𝑛) ≤ 𝑘𝑘 𝑚𝑚(𝐸𝐸 ∖ 𝐸𝐸𝑛𝑛) = 𝑘𝑘 𝑚𝑚(𝐹𝐹𝑛𝑛), 

and hence  

0 ≤ lim sup
𝑛𝑛

(𝑚𝑚(𝐸𝐸) −𝑚𝑚(𝐸𝐸𝑛𝑛)) ≤ 𝑘𝑘 �𝑚𝑚
∞

𝑛𝑛=1

(𝐹𝐹𝑛𝑛) = 0. 

Thus, (𝑂𝑂) lim𝑛𝑛(𝑚𝑚(𝐸𝐸) −𝑚𝑚(𝐸𝐸𝑛𝑛)) = 0, that is 𝑚𝑚(𝐸𝐸) = (𝑂𝑂) lim𝑛𝑛 𝑚𝑚 (𝐸𝐸𝑛𝑛) = ⋁ 𝑚𝑚∞
𝑛𝑛=1 (𝐸𝐸𝑛𝑛). So we get that 𝑚𝑚 is 

continuous from below.          □ 

If 𝑚𝑚:𝒲𝒲 → 𝑅𝑅 (𝑚𝑚: Σ → 𝑅𝑅, respectively), we denote by  

𝑣𝑣(𝑚𝑚)(𝐴𝐴): = �{𝑚𝑚(𝐵𝐵):𝐵𝐵 ∈ 𝒲𝒲,𝐵𝐵 ⊂ 𝐴𝐴},𝐴𝐴 ∈ 𝒲𝒲 

( 𝑣𝑣(𝑚𝑚)(𝐴𝐴): = �{𝑚𝑚(𝐵𝐵):𝐵𝐵 ∈ Σ,𝐵𝐵 ⊂ 𝐴𝐴},𝐴𝐴 ∈ Σ respectively)  

the semivariation of 𝑚𝑚. Note that the semivariation satisfies the following property, which for a sake of simplicity 
we give only with respect to 𝒲𝒲, but which holds also with respect to Σ.  

Proposition 3.7.  If 𝑚𝑚:𝒲𝒲 → 𝑅𝑅 is 𝑘𝑘-subadditive, then 𝑣𝑣(𝑚𝑚) is 𝑘𝑘-subadditive too.  

Proof. Choose arbitrarily 𝐴𝐴, 𝐵𝐵 ∈ 𝒲𝒲 with 𝐴𝐴 ∩ 𝐵𝐵 = ∅, pick 𝐶𝐶 ∈ 𝒲𝒲 with 𝐶𝐶 ⊂ 𝐴𝐴 ∪ 𝐵𝐵 and set 𝐶𝐶1: = 𝐴𝐴 ∩ 𝐶𝐶, 𝐶𝐶2: = 𝐵𝐵 ∩
𝐶𝐶. Note that 𝐶𝐶1 ∩ 𝐶𝐶2 = ∅. By (1) we get 𝑚𝑚(𝐶𝐶) ≤ 𝑚𝑚(𝐶𝐶1) + 𝑘𝑘 𝑚𝑚(𝐶𝐶2), and hence 𝑚𝑚(𝐶𝐶) ≤ 𝑣𝑣(𝑚𝑚)(𝐴𝐴) + 𝑘𝑘 𝑣𝑣(𝑚𝑚)(𝐵𝐵). By 
arbitrariness of 𝐶𝐶 we get 𝑘𝑘-subadditivity of 𝑣𝑣(𝑚𝑚).        □ 

Remark 3.8.  Observe that, if 𝑚𝑚: Σ → 𝑅𝑅 is a 𝑘𝑘-subadditive capacity, continuous from above at ∅, then 𝑚𝑚 is (𝑠𝑠)-
bounded. Indeed, if (𝐶𝐶ℎ)ℎ  is any disjoint sequence in Σ, then for every ℎ ∈ ℕ we get  

0 ≤ 𝑚𝑚(𝐶𝐶ℎ) ≤ 𝑚𝑚(�𝐶𝐶𝑖𝑖

∞

𝑖𝑖=ℎ

) + 𝑘𝑘 𝑚𝑚( � 𝐶𝐶𝑖𝑖

∞

𝑖𝑖=ℎ+1

). 

Taking the (𝑂𝑂)-limit as ℎ tends to +∞, by virtue of monotonicity, 𝑘𝑘-subadditivity and continuity from above at ∅ we 
get (𝑂𝑂) limℎ 𝑚𝑚 (𝐶𝐶ℎ) = 0. By arbitrariness of the chosen sequence (𝐶𝐶ℎ)ℎ  we get (𝑠𝑠)-boundedness of 𝑚𝑚.       □ 

We now give the following technical proposition.  

Proposition 3.9.  Let 𝑚𝑚:𝒲𝒲 → 𝑅𝑅 be a bounded positive set function and 𝛺𝛺 be as in Theorem 3.2. If there is a meager 
set 𝑁𝑁∗ ⊂ 𝛺𝛺 such that the set functions 𝑚𝑚(⋅)(𝜔𝜔) are real-valued and 𝑘𝑘-subadditive capacities for each 𝜔𝜔 ∈ 𝛺𝛺 ∖ 𝑁𝑁∗, 
then 𝑚𝑚 is a 𝑘𝑘-subadditive capacity. Moreover, if 𝑚𝑚 is a 𝑘𝑘-subadditive capacity, then the set functions 𝑚𝑚(⋅)(𝜔𝜔) are 
𝑘𝑘-subadditive real-valued capacities for each 𝜔𝜔 ∈ 𝛺𝛺.  

Proof. First of all observe that, since 𝑚𝑚 is bounded, then the range of 𝑚𝑚 is embedded in the space 𝒞𝒞(Ω): = {𝑓𝑓: Ω →
ℝ, 𝑓𝑓 is continuous}, where Ω is as in Theorem 2 (see also [21, Theorem 4.1], [35, p. 69]). Hence, for every 𝜔𝜔 ∈ Ω 
the set function 𝑚𝑚𝜔𝜔  defined by 𝑚𝑚𝜔𝜔(𝐴𝐴): = 𝑚𝑚(𝐴𝐴)(𝜔𝜔), 𝐴𝐴 ∈ 𝒲𝒲, is real-valued. We now prove the first part. If 𝑁𝑁∗ is as 
in the hypothesis, then  
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𝑚𝑚(𝐴𝐴 ∪ 𝐵𝐵)(𝜔𝜔) ≤ 𝑚𝑚(𝐴𝐴)(𝜔𝜔) + 𝑘𝑘 𝑚𝑚(𝐵𝐵)(𝜔𝜔), 
0 = 𝑚𝑚(∅)(𝜔𝜔) ≤ 𝑚𝑚(𝐴𝐴)(𝜔𝜔) ≤ 𝑚𝑚(𝐵𝐵)(𝜔𝜔) 

for any 𝐴𝐴, 𝐵𝐵 ∈ 𝒲𝒲 and 𝜔𝜔 ∈ Ω ∖ 𝑁𝑁∗. Since 𝑁𝑁∗ is meager, thanks to Theorem 3.2, by a density argument it follows that  

𝑚𝑚(𝐴𝐴 ∪ 𝐵𝐵) ≤ 𝑚𝑚(𝐴𝐴) + 𝑘𝑘 𝑚𝑚(𝐵𝐵), 
0 = 𝑚𝑚(∅) ≤ 𝑚𝑚(𝐴𝐴) ≤ 𝑚𝑚(𝐵𝐵) 

for every 𝐴𝐴, 𝐵𝐵 ∈ 𝒲𝒲, that is 𝑚𝑚 is a 𝑘𝑘-subadditive capacity. The proof of the last part is analogous, by reversing the 
argument.       □ 

4.The main results 

We begin with treating (𝑠𝑠)-boundedness of 𝑘𝑘-subadditive capacities. In general, differently from the finitely 
additive setting, it is not true that every bounded 𝑘𝑘-subadditive capacity is (𝑠𝑠)-bounded, even in the real case. For 
example let 𝐺𝐺 = [1,2], 𝒲𝒲 = 𝒫𝒫(𝐺𝐺), and set  

 𝑚𝑚(∅) = 0 and 𝑚𝑚(𝐴𝐴) = sup 𝐴𝐴 (2) 

if 𝐴𝐴 ⊂ 𝐺𝐺, 𝐴𝐴 ≠ ∅. It is not difficult to see that 𝑚𝑚 is positive, monotone and 1-subadditive. For any disjoint sequence 
(𝐴𝐴𝑛𝑛)𝑛𝑛  of nonempty subsets of 𝐺𝐺 we get 𝑚𝑚(𝐴𝐴𝑛𝑛) ≥ 1 for every 𝑛𝑛 ∈ ℕ, and so it is not true that lim𝑛𝑛 𝑚𝑚 (𝐴𝐴𝑛𝑛) = 0. 
Thus 𝑚𝑚 is not (𝑠𝑠)-bounded.  

So, we consider the disjoint variation of a lattice group-valued set function (see also [29,36]).  

Definitions 4.1.  (a) Let us add to 𝑅𝑅 an extra element +∞, obeying to the usual rules, and for a positive set function 
𝑚𝑚:𝒲𝒲 → 𝑅𝑅 define the disjoint variation 𝑚𝑚:𝒲𝒲 → 𝑅𝑅 ∪ {+∞} of 𝑚𝑚 by  

 𝑚𝑚(𝐴𝐴): = �(
𝐼𝐼

�𝑚𝑚
𝑖𝑖∈𝐼𝐼

(𝐷𝐷𝑖𝑖)), 𝐴𝐴 ∈ 𝒲𝒲, (3) 

where the supremum in (3) is intended with respect to all finite disjoint families {𝐷𝐷𝑖𝑖 : 𝑖𝑖 ∈ 𝐼𝐼} with 𝐷𝐷𝑖𝑖 ∈ 𝒲𝒲 and 𝐷𝐷𝑖𝑖 ⊂ 𝐴𝐴 
for each 𝑖𝑖 ∈ 𝐼𝐼.  

(b) A set function 𝑚𝑚 is said to be of bounded disjoint variation on 𝒲𝒲 (shortly, 𝐵𝐵𝐷𝐷𝐵𝐵) iff 𝑚𝑚(𝐺𝐺) ∈ 𝑅𝑅, where 𝑚𝑚 is as in 
(3).  

Examples 4.2. (a) Let 𝑚𝑚 be as in (2), it is not difficult to see that 𝑣𝑣(𝑚𝑚)(𝐺𝐺) = 2. Fix arbitrarily 𝑛𝑛 ∈ ℕ, and set 
𝐷𝐷𝑖𝑖 = [1 + 𝑖𝑖−1

𝑛𝑛
, 1 + 𝑖𝑖

𝑛𝑛
[, 𝑖𝑖 = 1, … ,𝑛𝑛. We get 𝑚𝑚(𝐷𝐷𝑖𝑖) = sup 𝐷𝐷𝑖𝑖 ≥ 1, and hence ∑ 𝑚𝑚𝑛𝑛

𝑖𝑖=1 (𝐷𝐷𝑖𝑖) ≥ 𝑛𝑛. From this and by 
arbitrariness of 𝑛𝑛 it follows that 𝑚𝑚(𝐺𝐺) = +∞, and so 𝑚𝑚 is not 𝐵𝐵𝐷𝐷𝐵𝐵. Hence, in general boundedness does not imply 
𝐵𝐵𝐷𝐷𝐵𝐵, though it is readily seen that the converse implication is true.  

(b) Let 𝑚𝑚0:𝒫𝒫(ℕ) → ℝ be defined by 𝑚𝑚0(𝐴𝐴): = ∑ (−1)𝑛𝑛

𝑛𝑛2𝑛𝑛∈𝐴𝐴 , 𝐴𝐴 ⊂ ℕ, and set 𝑚𝑚∗(𝐴𝐴): = |𝑚𝑚0(𝐴𝐴)|,  

𝑚𝑚(𝐴𝐴): = 𝑣𝑣(𝑚𝑚∗)(𝐴𝐴) = sup { |𝑚𝑚0(𝐵𝐵)|:𝐵𝐵 ⊂ 𝐴𝐴} = sup { |�
(−1)𝑛𝑛

𝑛𝑛2
𝑛𝑛∈𝐵𝐵

|:𝐵𝐵 ⊂ 𝐴𝐴},   𝐴𝐴 ⊂ ℕ. 
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Note that 𝑚𝑚∗ is not increasing, since 𝑚𝑚∗({1,3}) = 10
9

> 31
36

= 𝑚𝑚∗({1,2,3}). It is not difficult to check that 𝑚𝑚∗ is 1-
subadditive on 𝒫𝒫(ℕ). Hence, by Proposition 3.7, 𝑚𝑚 is 1-subadditive on 𝒫𝒫(ℕ) too. Moreover, by construction, 𝑚𝑚 is 
positive and monotone, and 𝑚𝑚(∅) = 0. Furthermore we get  

0 ≤ 𝑚𝑚(ℕ) = sup
𝐼𝐼

(�𝑚𝑚
𝑖𝑖∈𝐼𝐼

(𝐷𝐷𝑖𝑖)) = sup
𝐼𝐼

(�(
𝑖𝑖∈𝐼𝐼

max
𝐵𝐵⊂𝐷𝐷𝑖𝑖

|�
(−1)𝑛𝑛

𝑛𝑛2
𝑛𝑛∈𝐵𝐵

|)) ≤ 

 ≤ sup
𝐼𝐼

(�(
𝑖𝑖∈𝐼𝐼

�
1
𝑛𝑛2

𝑛𝑛∈𝐷𝐷𝑖𝑖

)) = �
1
𝑛𝑛2

∞

𝑛𝑛=1

=
𝜋𝜋2

6
, (4) 

where the involved supremum is taken with respect to all finite disjoint families {𝐷𝐷𝑖𝑖 : 𝑖𝑖 ∈ 𝐼𝐼} such that 𝐷𝐷𝑖𝑖 ⊂ ℕ for 
every 𝑖𝑖 ∈ 𝐼𝐼, and hence 𝑚𝑚 is 𝐵𝐵𝐷𝐷𝐵𝐵. Note that the supremum in (4) is exactly equal to 𝜋𝜋

6
: indeed it is enough to 

consider, for each 𝑛𝑛 ∈ ℕ, the family {𝐷𝐷𝑗𝑗 : = {𝑗𝑗}: 𝑗𝑗 = 1, … ,𝑛𝑛} and to take into account that 𝑚𝑚({𝑗𝑗}) = 1
𝑗𝑗 2 for every 

𝑗𝑗 ∈ ℕ. Finally, we have  

𝑚𝑚({1,2}) = max { 1,
1
4

,
3
4

} = 1 <
5
4

= 1 +
1
4

= 𝑚𝑚({1}) + 𝑚𝑚({2}), 

and so 𝑚𝑚 is not finitely additive.  

(c) Let 𝐺𝐺 = [1,1], Σ be the 𝜎𝜎-algebra of all Borel subsets of 𝐺𝐺, 𝑚𝑚0(𝐴𝐴) = ∫ s𝐴𝐴 gn 𝑥𝑥 𝑑𝑑𝑥𝑥, 𝐴𝐴 ∈ Σ, where sgn(𝑥𝑥) = 1 if 

𝑥𝑥 ∈]0,1], sgn(𝑥𝑥) = −1 if 𝑥𝑥 ∈ [−1,0[ and sgn(0) = 0, and put 𝑚𝑚∗(𝐴𝐴) = �|𝑚𝑚0(𝐴𝐴)|, 𝐴𝐴 ∈ Σ (see also [29, Example 
3.1]). Note that 𝑚𝑚∗ is not monotone: indeed we have  

𝑚𝑚∗(𝐺𝐺) = �|𝑚𝑚0(𝐺𝐺)| = �|� s
1

−1
gn 𝑥𝑥 𝑑𝑑𝑥𝑥| = 0 = 𝑚𝑚∗(∅), 

𝑚𝑚∗([0,1]) = �|𝑚𝑚0([0,1])| = �|� s
1

0
gn 𝑥𝑥 𝑑𝑑𝑥𝑥| = 1. 

Now, fix arbitrarily 𝑛𝑛 ∈ ℕ and pick 𝐷𝐷𝑖𝑖 = [𝑖𝑖−1
𝑛𝑛

, 𝑖𝑖
𝑛𝑛

[, 𝑖𝑖 = −𝑛𝑛 + 1, −𝑛𝑛 + 2,…,−1, 0, 1,…,𝑛𝑛. We have  

𝑚𝑚∗(𝐺𝐺) ≥ � �1
𝑛𝑛

𝑛𝑛

𝑖𝑖=−𝑛𝑛+1

=
2 𝑛𝑛
√𝑛𝑛

= 2√𝑛𝑛. 

From this, by arbitrariness of 𝑛𝑛, it follows that 𝑚𝑚∗ is not 𝐵𝐵𝐷𝐷𝐵𝐵.  

We prove that 𝑚𝑚∗ is 1-subadditive. Fix arbitrarily two disjoint sets 𝐴𝐴, 𝐵𝐵 ∈ Σ. We get  

𝑚𝑚∗(𝐴𝐴 ∪ 𝐵𝐵) = �|𝑚𝑚0(𝐴𝐴 ∪ 𝐵𝐵)| = �|� s
𝐴𝐴∪𝐵𝐵

gn 𝑥𝑥 𝑑𝑑𝑥𝑥| = 

= �|�s
𝐴𝐴

gn 𝑥𝑥 𝑑𝑑𝑥𝑥 + � s
𝐵𝐵

gn 𝑥𝑥 𝑑𝑑𝑥𝑥| ≤ �|�s
𝐴𝐴

gn 𝑥𝑥 𝑑𝑑𝑥𝑥| + |�s
𝐵𝐵

gn 𝑥𝑥 𝑑𝑑𝑥𝑥| = 

= �|𝑚𝑚0(𝐴𝐴)| + |𝑚𝑚0(𝐵𝐵)| ≤ �|𝑚𝑚0(𝐴𝐴)| + �|𝑚𝑚0(𝐵𝐵)| = 𝑚𝑚∗(𝐴𝐴) + 𝑚𝑚∗(𝐵𝐵). 
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Set now 𝑚𝑚(𝐴𝐴): = 𝑣𝑣(𝑚𝑚∗)(𝐴𝐴) = sup {𝑚𝑚∗(𝐵𝐵):𝐵𝐵 ∈ Σ,𝐵𝐵 ⊂ 𝐴𝐴}, 𝐴𝐴 ∈ Σ. Of course, 𝑚𝑚 is positive and increasing. Since 
𝑚𝑚∗ is not 𝐵𝐵𝐷𝐷𝐵𝐵, then a fortiori 𝑚𝑚 is not. Moreover, by Proposition 3.7, 𝑚𝑚 is 1-subadditive, since 𝑚𝑚∗ is. Furthermore, 
it is not difficult to see that 𝑚𝑚∗ is (𝑠𝑠)-bounded, and hence, by [37, Theorem 2.2], 𝑚𝑚 is (𝑠𝑠)-bounded too. Thus 
property 𝐵𝐵𝐷𝐷𝐵𝐵 is not a necessary condition for (𝑠𝑠)-boundedness of 𝑘𝑘-subadditive capacities.          □  

We now give a sufficient condition for (𝑠𝑠)-boundedness of a set function 𝑚𝑚 with values in a lattice group 𝑅𝑅 and of 
its “components” 𝑚𝑚(⋅)(𝜔𝜔), when 𝑅𝑅 is considered as a subgroup of 𝒞𝒞∞(Ω) as in Theorem 3.2, for 𝜔𝜔 belonging to the 
complement of a suitable meager subset of Ω.  

The following result extends [14, Theorem 3.1] to the non-additive setting.  

Proposition 4.3. Let 𝑚𝑚:𝒲𝒲 → 𝑅𝑅 be a 𝐵𝐵𝐷𝐷𝐵𝐵 set function, and 𝑅𝑅 ⊂ 𝒞𝒞∞(𝛺𝛺), where 𝛺𝛺 is as in Theorem 3.2. Then the set 
function 𝑚𝑚𝜔𝜔 : = 𝑚𝑚(⋅)(𝜔𝜔) is real-valued, 𝐵𝐵𝐷𝐷𝐵𝐵 and (𝑠𝑠)-bounded for every 𝜔𝜔 ∈ 𝛺𝛺. Moreover 𝑚𝑚 is (𝑠𝑠)-bounded on 𝒲𝒲.  

Proof. By arguing analogously as at the beginning of the proof of Proposition 3.9, we get that for every 𝜔𝜔 ∈ Ω the 
set function 𝑚𝑚𝜔𝜔  defined by 𝑚𝑚𝜔𝜔(𝐴𝐴): = 𝑚𝑚(𝐴𝐴)(𝜔𝜔), 𝐴𝐴 ∈ 𝒲𝒲, is real-valued. For every 𝜔𝜔 ∈ Ω we have  

𝑚𝑚𝜔𝜔(𝐺𝐺) = sup
𝐼𝐼

(�(
𝑖𝑖∈𝐼𝐼

𝑚𝑚(𝐷𝐷𝑖𝑖)(𝜔𝜔))) = sup
𝐼𝐼

( (�𝑚𝑚
𝑖𝑖∈𝐼𝐼

(𝐷𝐷𝑖𝑖))(𝜔𝜔)) ≤ 

 ≤ (�(
𝐼𝐼

�𝑚𝑚
𝑖𝑖∈𝐼𝐼

(𝐷𝐷𝑖𝑖)))(𝜔𝜔) = (𝑚𝑚(𝐺𝐺))(𝜔𝜔) ∈ ℝ, (5) 

since the pointwise supremum is less or equal than the corresponding lattice supremum in 𝒞𝒞(Ω). Thus, 𝑚𝑚𝜔𝜔  is 𝐵𝐵𝐷𝐷𝐵𝐵 
for each 𝜔𝜔 ∈ Ω. By [36, Theorem 3.2], for any disjoint sequence (𝐻𝐻𝑛𝑛 )𝑛𝑛  in 𝒲𝒲 and for every 𝜔𝜔 ∈ Ω we get 
lim𝑛𝑛 𝑚𝑚𝜔𝜔 (𝐻𝐻𝑛𝑛) = 0 and a fortiori lim𝑛𝑛 𝑚𝑚𝜔𝜔 (𝐻𝐻𝑛𝑛) = 0. Thus we obtain the first part of the assertion.  

Fix now any disjoint sequence (𝐻𝐻𝑛𝑛)𝑛𝑛  in 𝒲𝒲. By Theorem 3.2 there is a meager set 𝑁𝑁∗, depending on (𝐻𝐻𝑛𝑛)𝑛𝑛 , with  

[�(
∞

𝑛𝑛=1

�𝑚𝑚
∞

𝑠𝑠=𝑛𝑛

(𝐻𝐻𝑠𝑠))](𝜔𝜔) = inf
𝑛𝑛

( sup
𝑠𝑠≥𝑛𝑛

(𝑚𝑚(𝐻𝐻𝑠𝑠)(𝜔𝜔))) = sup
𝑛𝑛

( inf
𝑠𝑠≥𝑛𝑛

(𝑚𝑚(𝐻𝐻𝑠𝑠)(𝜔𝜔))) = [�(
∞

𝑛𝑛=1

�𝑚𝑚
∞

𝑠𝑠=𝑛𝑛

(𝐻𝐻𝑠𝑠))](𝜔𝜔) 

for every 𝜔𝜔 ∈ Ω ∖ 𝑁𝑁∗. From this we obtain [(𝑂𝑂) lim𝑛𝑛 𝑚𝑚 (𝐻𝐻𝑛𝑛 )](𝜔𝜔) = 0 for each 𝜔𝜔 ∈ Ω ∖ 𝑁𝑁∗. Since the complement 
of every meager subset of Ω is dense in Ω, we have [(𝑂𝑂) lim𝑛𝑛 𝑚𝑚 (𝐻𝐻𝑛𝑛 )](𝜔𝜔) = 0 for every 𝜔𝜔 ∈ Ω, namely 
(𝑂𝑂) lim𝑛𝑛 𝑚𝑚 (𝐻𝐻𝑛𝑛) = 0. By arbitrariness of the chosen sequence (𝐻𝐻𝑛𝑛)𝑛𝑛 , we get (𝑠𝑠)-boundedness of 𝑚𝑚 on 𝒲𝒲. This 
ends the proof.          □ 

Remark 4.4. Our theory here treated includes also the finitely additive case. Indeed, if 𝑚𝑚:𝒲𝒲 → 𝑅𝑅 is any finitely 
additive positive measure and {𝐷𝐷𝑖𝑖 : 𝑖𝑖 ∈ 𝐼𝐼} is any finite disjoint family of subsets of 𝐺𝐺, whose union we denote by 𝐵𝐵, 
then, by finite additivity and monotonicity, we get  

 �𝑚𝑚
𝑖𝑖∈𝐼𝐼

(𝐷𝐷𝑖𝑖) = 𝑚𝑚(�𝐷𝐷𝑖𝑖
𝑖𝑖∈𝐼𝐼

) = 𝑚𝑚(𝐵𝐵) ≤ 𝑚𝑚(𝐺𝐺) (6) 

(see also [29, Proposition 3.4]). Thus, 𝑚𝑚 is 𝐵𝐵𝐷𝐷𝐵𝐵.        □ 

We now deal with extensions of 𝑘𝑘-subadditive capacities, taking valued in any Dedekind complete lattice group. An 
algebra 𝒲𝒲 ⊂ 𝒫𝒫(𝐺𝐺) is said to be perfect iff every monotone sequence (𝐴𝐴𝑛𝑛)𝑛𝑛  of sets from 𝒲𝒲, such that its limit in the 
set-theoretic sense belongs to 𝒲𝒲, is eventually constant.  
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We now give the following  

Theorem 4.5.  Let 𝑅𝑅 be any Dedekind complete lattice group, 𝒲𝒲 be a perfect algebra, 𝑚𝑚0:𝒲𝒲 → 𝑅𝑅 be a 𝐵𝐵𝐷𝐷𝐵𝐵 𝑘𝑘-
subadditive capacity. Then there is a (unique) 𝐵𝐵𝐷𝐷𝐵𝐵 𝑘𝑘-subadditive capacity 𝑚𝑚� :𝜎𝜎(𝒲𝒲) → 𝑅𝑅, extending 𝑚𝑚0, 
continuous from above and from below on 𝜎𝜎(𝒲𝒲).  

Proof. First of all note that, by Proposition 3.9, for every 𝜔𝜔 ∈ Ω the set function 𝑚𝑚𝜔𝜔  defined by 𝑚𝑚𝜔𝜔(𝐴𝐴): =
𝑚𝑚0(𝐴𝐴)(𝜔𝜔), 𝐴𝐴 ∈ 𝒲𝒲, is a real-valued 𝑘𝑘-subadditive capacity, which is continuous from above and from below, 
because 𝒲𝒲 is perfect. Since 𝑚𝑚0 is 𝐵𝐵𝐷𝐷𝐵𝐵, then by Proposition 4.3 the set function 𝑚𝑚𝜔𝜔  is 𝐵𝐵𝐷𝐷𝐵𝐵 and (𝑠𝑠)-bounded on 𝒲𝒲 
for every 𝜔𝜔 ∈ Ω. Since 𝑚𝑚𝜔𝜔  is 𝑘𝑘-subadditive, then it is uniformly autocontinuous, namely for every 𝜀𝜀 > 0 there is 
𝛿𝛿 = 𝛿𝛿(𝜀𝜀) > 0 such that for every 𝐴𝐴, 𝐵𝐵 ∈ 𝒲𝒲 with 𝑚𝑚𝜔𝜔(𝐵𝐵) ≤ 𝛿𝛿 we get 𝑚𝑚𝜔𝜔(𝐴𝐴 ∪ 𝐵𝐵) ≤ 𝑚𝑚𝜔𝜔(𝐴𝐴) + 𝜀𝜀 (see also [20,29]). 
(Indeed, it is enough to take, in correspondence with 𝜀𝜀 > 0, 𝛿𝛿(𝜀𝜀): = 𝜀𝜀

𝑘𝑘
). By [20, Theorem 18], for each 𝜔𝜔 ∈ Ω there 

is a real-valued capacity 𝜈𝜈𝜔𝜔 , continuous from above and from below, defined on 𝜎𝜎(𝒲𝒲), which is an extension of 
𝑚𝑚𝜔𝜔 . We claim that 𝜈𝜈𝜔𝜔  is 𝑘𝑘-subadditive on 𝜎𝜎(𝒲𝒲). First of all, observe that 𝜈𝜈𝜔𝜔  is 𝑘𝑘-subadditive on 𝒲𝒲+, where 𝒲𝒲+ is 
the family of all subsets of 𝐺𝐺 which can be expressed as countable union of (increasing) sequences of elements of 
𝒲𝒲. Indeed, observe that, by construction, 𝜈𝜈𝜔𝜔(𝐸𝐸) = lim𝑛𝑛 𝑚𝑚𝜔𝜔 (𝐸𝐸𝑛𝑛) = sup𝑛𝑛 𝑚𝑚𝜔𝜔 (𝐸𝐸𝑛𝑛) whenever 𝐸𝐸 ∈ 𝒲𝒲+, 𝐸𝐸 =
⋃ 𝐸𝐸𝑛𝑛∞
𝑛𝑛=1  (see also [20]). Let 𝐴𝐴 = ⋃ 𝐴𝐴𝑛𝑛∞

𝑛𝑛=1 , 𝐵𝐵 = ⋃ 𝐵𝐵𝑛𝑛∞
𝑛𝑛=1 , where (𝐴𝐴𝑛𝑛)𝑛𝑛  and (𝐵𝐵𝑛𝑛)𝑛𝑛  are two increasing sequences in 

𝒲𝒲. For each 𝑛𝑛 ∈ ℕ, put 𝐷𝐷𝑛𝑛 : = 𝐴𝐴𝑛𝑛 ∪ 𝐵𝐵𝑛𝑛 . Observe that (𝐷𝐷𝑛𝑛)𝑛𝑛  is an increasing sequence in 𝒲𝒲 and ⋃ 𝐷𝐷𝑛𝑛∞
𝑛𝑛=1 = 𝐴𝐴 ∪ 𝐵𝐵. 

By monotonicity and 𝑘𝑘-subadditivity of 𝑚𝑚𝜔𝜔  on 𝒲𝒲 we get  

𝑚𝑚𝜔𝜔(𝐷𝐷𝑛𝑛) ≤ 𝑚𝑚𝜔𝜔(𝐴𝐴𝑛𝑛) + 𝑘𝑘 𝑚𝑚𝜔𝜔(𝐵𝐵𝑛𝑛)  for any 𝑛𝑛 ∈ ℕ, 
𝜈𝜈𝜔𝜔(𝐴𝐴 ∪ 𝐵𝐵) = sup

𝑛𝑛
𝑚𝑚𝜔𝜔 (𝐷𝐷𝑛𝑛) ≤ sup

𝑛𝑛
𝑚𝑚𝜔𝜔 (𝐴𝐴𝑛𝑛) + 𝑘𝑘  sup

𝑛𝑛
𝑚𝑚𝜔𝜔 (𝐵𝐵𝑛𝑛) = 𝜈𝜈𝜔𝜔(𝐴𝐴) + 𝑘𝑘 𝜈𝜈𝜔𝜔(𝐵𝐵). 

Moreover, 𝜈𝜈𝜔𝜔  is 𝑘𝑘-subadditive on 𝒲𝒲∗: = {𝐴𝐴 ⊂ 𝐺𝐺: there is 𝐷𝐷 ∈ 𝒲𝒲+ with 𝐷𝐷 ⊃ 𝐴𝐴}: from this the claim will follow, 
since 𝜎𝜎(𝒲𝒲) ⊂ 𝒲𝒲∗. Indeed, by construction we have 𝜈𝜈𝜔𝜔(𝐴𝐴) = inf { 𝜈𝜈𝜔𝜔(𝐷𝐷): 𝐷𝐷 ⊃ 𝐴𝐴, 𝐷𝐷 ∈ 𝒲𝒲+} for any 𝐴𝐴 ∈ 𝒲𝒲∗ and 
𝜔𝜔 ∈ Ω (see also [20]). Choose arbitrarily 𝐴𝐴1, 𝐴𝐴2 ∈ 𝒲𝒲∗. Pick 𝐷𝐷1, 𝐷𝐷2 ∈ 𝒲𝒲+, with 𝐷𝐷𝑖𝑖 ⊃ 𝐴𝐴𝑖𝑖 , 𝑖𝑖 = 1,2. From 
monotonicity and 𝑘𝑘-subadditivity of 𝜈𝜈𝜔𝜔  on 𝒲𝒲+ we get  

𝜈𝜈𝜔𝜔 (𝐴𝐴1 ∪ 𝐴𝐴2) ≤ 𝜈𝜈𝜔𝜔(𝐷𝐷1 ∪ 𝐷𝐷2) ≤ 𝜈𝜈𝜔𝜔(𝐷𝐷1) + 𝑘𝑘 𝜈𝜈𝜔𝜔(𝐷𝐷2). 

Taking the infima with respect to 𝐷𝐷1 and 𝐷𝐷2, we get 𝜈𝜈𝜔𝜔(𝐴𝐴1 ∪ 𝐴𝐴2) ≤ 𝜈𝜈𝜔𝜔(𝐴𝐴1) + 𝑘𝑘 𝜈𝜈𝜔𝜔(𝐴𝐴2).  

Now let 𝒜𝒜: = {𝐴𝐴 ∈ 𝜎𝜎(𝒲𝒲): there is a function 𝑓𝑓 = 𝑓𝑓𝐴𝐴 ∈ 𝒞𝒞(Ω) such that the set {𝜔𝜔 ∈ Ω: 𝜈𝜈𝜔𝜔(𝐴𝐴) ≠ 𝑓𝑓𝐴𝐴(𝜔𝜔)} is meager 
in Ω}. Note that, by construction, 𝒜𝒜 contains 𝒲𝒲. We now claim that 𝒜𝒜 is a monotone family. Let (𝐸𝐸𝑛𝑛)𝑛𝑛  be any 
increasing sequence in 𝒜𝒜, set 𝐸𝐸0: = ⋃ 𝐸𝐸𝑛𝑛∞

𝑛𝑛=1 , and for every 𝑛𝑛 ∈ ℕ let 𝑁𝑁𝑛𝑛  be a meager set associated with 𝐸𝐸𝑛𝑛 , 
according to the definition of 𝒜𝒜. Put 𝑓𝑓 = ⋁  𝑛𝑛 𝑓𝑓𝐸𝐸𝑛𝑛 , where the involved supremum is taken in 𝒞𝒞(Ω), and let 𝑁𝑁0 ⊂ Ω 
be a meager set with 𝑓𝑓(𝜔𝜔) = sup𝑛𝑛(𝑓𝑓𝐸𝐸𝑛𝑛 (𝜔𝜔)) for each 𝜔𝜔 ∈ Ω ∖ 𝑁𝑁0, where the involved supremum is the pointwise 
one, according to Theorem 3.2. For every 𝜔𝜔 ∈ Ω ∖ (⋃ 𝑁𝑁𝑛𝑛∞

𝑛𝑛=0 ) we have  

𝜈𝜈𝜔𝜔(𝐸𝐸0) = sup
𝑛𝑛
  𝜈𝜈𝜔𝜔(𝐸𝐸𝑛𝑛) = sup

𝑛𝑛
[ 𝑓𝑓𝐸𝐸𝑛𝑛 (𝜔𝜔)] = 𝑓𝑓(𝜔𝜔). 

Therefore 𝒜𝒜 is closed under unions of increasing sequences. Analogously it is possible to see that 𝒜𝒜 is closed under 
intersections of decreasing sequences. Hence, 𝒜𝒜 is a monotone family containing 𝒲𝒲 and contained in 𝜎𝜎(𝒲𝒲), and 
therefore 𝒜𝒜 = 𝜎𝜎(𝒲𝒲). Now, with the same notations as in Theorem 3.2, for each 𝐴𝐴 ∈ 𝜎𝜎(𝒲𝒲) put 𝑚𝑚�(𝐴𝐴): = 𝑎𝑎𝐴𝐴 if 
𝑎𝑎𝐴𝐴� = 𝑓𝑓𝐴𝐴.  

We get that 𝑚𝑚�(𝐴𝐴) is a 𝑘𝑘-subadditive capacity, continuous from above and from below (and hence (𝑠𝑠)-bounded), 
which extends 𝑚𝑚. Note that the properties of 𝑚𝑚�  are consequences of the corresponding ones of 𝜈𝜈𝜔𝜔 , 𝜔𝜔 ∈ Ω and of the 

http://www.akrpub.com/Journals.php�


Academic Open Mathematics Research Journal                                                                                                        
Vol. 1, No. 1, January 2016, pp. 1-13 
Available online at http://www.akrpub.com/Journals.php 
  
 

10 
Copyright © akrpub.com, all rights reserved.  

fact that 𝒜𝒜 coincides with 𝜎𝜎(𝒲𝒲). Here we prove only continuity from above, since the proof of the other properties 
is analogous. Let 𝐴𝐴0 = ⋃ 𝐴𝐴𝑛𝑛∞

𝑛𝑛=1 , with 𝐴𝐴𝑛𝑛 ∈ 𝜎𝜎(𝒲𝒲) for every 𝑛𝑛 ∈ ℕ. For each 𝑛𝑛 ∈ ℕ ∪ {0}, let 𝑁𝑁𝑛𝑛′ : = {𝜔𝜔 ∈ Ω: 
𝜈𝜈𝜔𝜔(𝐴𝐴𝑛𝑛) ≠ 𝑓𝑓𝐴𝐴𝑛𝑛 (𝜔𝜔)}. Then 𝑁𝑁𝑛𝑛′  is meager, and the set 𝑁𝑁 ′: = ⋃ 𝑁𝑁𝑛𝑛′∞

𝑛𝑛=0  is meager too. Thanks to continuity from below 
of 𝜈𝜈𝜔𝜔  on 𝜎𝜎(𝒲𝒲), for each 𝜔𝜔 ∈ Ω ∖ 𝑁𝑁 ′ we get  

𝑓𝑓𝐴𝐴0(𝜔𝜔) = 𝜈𝜈𝜔𝜔 (𝐴𝐴0) = sup
𝑛𝑛
  𝜈𝜈𝜔𝜔(𝐴𝐴𝑛𝑛) = sup

𝑛𝑛
[ 𝑓𝑓𝐴𝐴𝑛𝑛 (𝜔𝜔)] = (�𝑓𝑓𝐴𝐴𝑛𝑛

𝑛𝑛

)(𝜔𝜔). 

Hence, we get 𝑓𝑓𝐴𝐴0 = ⋁ 𝑓𝑓𝐴𝐴𝑛𝑛𝑛𝑛 . Continuity from below of 𝑚𝑚�  follows from this and arbitrariness of the chosen sequence 
(𝐴𝐴𝑛𝑛)𝑛𝑛 .  

Now we prove that 𝑚𝑚�  is 𝐵𝐵𝐷𝐷𝐵𝐵 on 𝜎𝜎(𝒲𝒲). Choose arbitrarily a finite disjoint family {𝐷𝐷𝑖𝑖 : 𝑖𝑖 = 1,2, … ,𝑛𝑛}, with 𝐷𝐷𝑖𝑖 ∈
𝜎𝜎(𝒲𝒲) for each 𝑖𝑖. There is a meager set 𝑁𝑁 ⊂ Ω, depending on (𝐷𝐷𝑖𝑖)𝑖𝑖 , with  

(�𝑚𝑚�
𝑛𝑛

𝑖𝑖=1

(𝐷𝐷𝑖𝑖))(𝜔𝜔) = �𝜈𝜈𝜔𝜔

𝑛𝑛

𝑖𝑖=1

(𝐷𝐷𝑖𝑖) 

for each 𝜔𝜔 ∈ Ω ∖ 𝑁𝑁. For every 𝜀𝜀 > 0, 𝜔𝜔 ∈ Ω ∖ 𝑁𝑁 and 𝑖𝑖 = 1, … ,𝑛𝑛 there is a set 𝐹𝐹𝑖𝑖
(𝜔𝜔) ∈ 𝒲𝒲 with 𝜈𝜈𝜔𝜔(𝐷𝐷𝑖𝑖 △ 𝐹𝐹𝑖𝑖

(𝜔𝜔)) ≤ 𝜀𝜀
𝑘𝑘 2𝑖𝑖

 
(see also [7,20]). From this, monotonicity and 𝑘𝑘-subadditivity of 𝜈𝜈𝜔𝜔  it follows that  

(�𝑚𝑚�
𝑛𝑛

𝑖𝑖=1

(𝐷𝐷𝑖𝑖))(𝜔𝜔) = �𝜈𝜈𝜔𝜔

𝑛𝑛

𝑖𝑖=1

(𝐷𝐷𝑖𝑖) ≤ 𝑘𝑘 �𝜈𝜈𝜔𝜔

𝑛𝑛

𝑖𝑖=1

(𝐷𝐷𝑖𝑖 △ 𝐹𝐹𝑖𝑖
(𝜔𝜔)) + �𝑚𝑚𝜔𝜔

𝑛𝑛

𝑖𝑖=1

(𝐹𝐹𝑖𝑖
(𝜔𝜔)) ≤ 

≤ 𝑘𝑘 �
𝜀𝜀
𝑘𝑘 2𝑖𝑖

∞

𝑖𝑖=1

+ 𝑚𝑚𝜔𝜔(𝐺𝐺) ≤ 𝑚𝑚0(𝐺𝐺)(𝜔𝜔) + 𝜀𝜀 

for every 𝜔𝜔 ∈ Ω ∖ 𝑁𝑁. By arbitrariness of 𝜀𝜀, we get  

(�𝑚𝑚�
𝑛𝑛

𝑖𝑖=1

(𝐷𝐷𝑖𝑖))(𝜔𝜔) ≤ 𝑚𝑚0(𝐺𝐺)(𝜔𝜔) 

for any 𝜔𝜔 ∈ Ω ∖ 𝑁𝑁. Since the complement of a meager set is dense in Ω, we obtain  

(�𝑚𝑚�
𝑛𝑛

𝑖𝑖=1

(𝐷𝐷𝑖𝑖))(𝜔𝜔) ≤ 𝑚𝑚0(𝐺𝐺)(𝜔𝜔) 

for every 𝜔𝜔 ∈ Ω, namely  

 �𝑚𝑚�
𝑛𝑛

𝑖𝑖=1

(𝐷𝐷𝑖𝑖) ≤ 𝑚𝑚0(𝐺𝐺). (7) 

From (7) and arbitrariness of the family {𝐷𝐷𝑖𝑖 : 𝑖𝑖 = 1, … ,𝑛𝑛}, passing to the supremum, we deduce that 𝑚𝑚�  is 𝐵𝐵𝐷𝐷𝐵𝐵 on 
𝜎𝜎(𝒲𝒲).      □    

Example 4.6. An example of an extension satisfying Theorem 4.5 is the so-called Stone extension. Given an algebra 
𝒲𝒲 ⊂ 𝒫𝒫(𝐺𝐺), there exists a compact and totally disconnected topological space 𝑄𝑄∗ such that 𝒲𝒲 is algebraically 
isomorphic to the algebra 𝒬𝒬 of all open-closed subsets of 𝑄𝑄∗. We call such an isomorphism 𝜓𝜓:𝒲𝒲 → 𝒬𝒬 the Stone 
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isomorphism. Given any 𝐵𝐵𝐷𝐷𝐵𝐵 𝑘𝑘-subadditive capacity 𝑚𝑚:𝒲𝒲 → 𝑅𝑅, define 𝑚𝑚0:𝒬𝒬 → 𝑅𝑅 by setting 𝑚𝑚0(𝐵𝐵): =
𝑚𝑚(𝜓𝜓−1(𝐵𝐵)) for every 𝐵𝐵 ∈ 𝒬𝒬. It is well-known that 𝒬𝒬 is perfect (see also [12]). By Theorem 4.5, 𝑚𝑚0 admits a 
(unique) 𝑅𝑅-valued extension 𝑚𝑚� , defined on 𝜎𝜎(𝒬𝒬), continuous from above and from below on 𝜎𝜎(𝒬𝒬). The set function 
𝑚𝑚�  is called the Stone extension of 𝑚𝑚. Thus, Theorem 4.5 extends [9, Theorem 2.6 and Lemma 2.7] to the 𝑘𝑘-
subadditive case.   
 
5. Conclusion  

We proved that every k-subadditive capacity of  bounded disjoint variation with values in any Dedekind complete 
lattice group, defined on a perfect algebra, admits an extension defined on the generated 𝜎𝜎 –algebra. We have 
substantially extended to non-additive case and lattice groups some results about extensions of set functions proved 
in [9, 20], showing that our context is a strict strengthening of the finitely additive case. Thanks to perfectness of the 
involved algebra, it is possible to give positive results about extension of set functions even if the involved lattice 
group is not weakly 𝜎𝜎-distributive, using the Maeda-Ogasawara-Vulikh representation theorem and similar 
extension results, proved for real-valued non-additive set functions.  It remains still an open question, to find other 
kinds of extension theorems for set functions when the hypothesis of bounded disjoint variation is dropped, and to 
investigate other cases, in which different  kinds of variations of non-additive set functions are considered (see also 
[29,36,37]). 
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